Hydrocarbon-like and oxygenated organic aerosols in Pittsburgh: insights into sources and processes of organic aerosols

نویسندگان

  • Q. Zhang
  • D. R. Worsnop
  • M. R. Canagaratna
  • J. L. Jimenez
چکیده

A recently developed algorithm (Zhang et al., 2005) has been applied to deconvolve the mass spectra of organic aerosols acquired with the Aerosol Mass Spectrometer (AMS) in Pittsburgh during September 2002. The results are used here to characterize the mass concentrations, size distributions, and mass spectra of hydrocarbon-like and oxygenated organic aerosol (HOA and OOA, respectively). HOA accounts for 34% of the measured organic aerosol mass and OOA accounts for 66%. The mass concentrations of HOA demonstrate a prominent diurnal profile that peaks in the morning during the rush hour and decreases with the rise of the boundary layer. The diurnal profile of OOA is relatively flat and resembles those of SO 4 and NH+4 . The size distribution of HOA shows a distinct ultrafine mode that is commonly associated with fresh emissions while OOA is generally concentrated in the accumulation mode and appears to be mostly internally mixed with the inorganic ions, such as SO 4 and NH + 4 . These observations suggest that HOA is likely primary aerosol from local, combustion-related emissions and that OOA is secondary organic aerosol (SOA) influenced by regional contributions. There is strong evidence of the direct correspondence of OOA to SOA during an intense new particle formation and growth event, when condensational growth of OOA was observed. The fact that the OOA mass spectrum from this event is very similar to that from the entire study suggests that the majority of OOA in Pittsburgh is likely SOA. O3 appears to be a poor indicator for OOA concentration while SO 4 is a relatively good surrogate for this dataset. Since the diurnal averages of HOA track those of CO during day time, oxidation/aging of HOA appears to be very small on the time scale Correspondence to: J. L. Jimenez ([email protected]) of several hours. Based on extracted mass spectra and the likely elemental compositions of major m/z’s, the organic mass to organic carbon ratios (OM:OC) of HOA and OOA are estimated at 1.2 and 2.2μg/μgC, respectively, leading to an average OM:OC ratio of 1.8 for submicron OA in Pittsburgh during September. The C:O ratio of OOA is estimated at 1:0.8. The carbon contents in HOA and OOA estimated accordingly correlate well to primary and secondary organic carbon, respectively, estimated by the OC/EC tracer technique (assuming POC-to-EC ratio=1). In addition, the total carbon concentrations estimated from the AMS data agree well with those measured by the Sunset Laboratory Carbon analyzer (r2=0.87; slope=1.01±0.11). Our results represent the first direct estimate of the OM:OC ratio from highly timeresolved chemical composition measurements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrocarbon-like and oxygenated organic aerosols

Hydrocarbon-like and oxygenated organic aerosols in Pittsburgh: insights into sources and processes of organic aerosols Q. Zhang, D. R. Worsnop, M. R. Canagaratna, and J.-L. Jimenez Cooperative Institute for Research in Environmental Sciences (CIRES), 216 UCB, University of Colorado-Boulder, Boulder, Colorado 80309-0216, USA Department of Chemistry and Biochemistry, 216 UCB, University of Color...

متن کامل

Deconvolution and quantification of hydrocarbon-like and oxygenated organic aerosols based on aerosol mass spectrometry.

A new technique has been developed to deconvolve and quantify the mass concentrations of hydrocarbon-like and oxygenated organic aerosols (HOA and OOA) using highly time-resolved organic mass spectra obtained with an Aerodyne Aerosol Mass Spectrometer (AMS). This technique involves a series of multivariate linear regressions that use mass-to-charge ratios (ml/s) 57 (mostly C4H9+) and 44 (mostly...

متن کامل

Deconvolution and Quantification of Hydrocarbon-like and Oxygenated Organic Aerosols Based on Aerosol Mass Spectrometry

A new technique has been developed to deconvolve and quantify the mass concentrations of hydrocarbon-like and oxygenated organic aerosols (HOA and OOA) using highly time-resolved organic mass spectra obtained with an Aerodyne Aerosol Mass Spectrometer (AMS). This technique involves a series of multivariate linear regressions that use mass-to-charge ratios (m/z’s) 57 (mostly C4H9) and 44 (mostly...

متن کامل

Submicron aerosol source apportionment of wintertime pollution in Paris, France by double positive matrix factorization (PMF) using an aerosol chemical speciation monitor (ACSM) and a multi-wavelength Aethalometer

Online non-refractory submicron aerosol mass spectrometer (AMS) measurements in urban areas have successfully allowed the apportionment of specific sources and/or physical and chemical properties of the organic fraction. However, in order to be fully representative of PM pollution, a comprehensive source apportionment analysis is needed by taking into account all major components of submicron a...

متن کامل

Source attribution of submicron organic aerosols during wintertime inversions by advanced factor analysis of aerosol mass spectra.

Real-time measurements of submicrometer aerosol were performed using an Aerodyne aerosol mass spectrometer (AMS) during three weeks at an urban background site in Zurich (Switzerland) in January 2006. A hybrid receptor model which incorporates a priori known source composition was applied to the AMS highly time-resolved organic aerosol mass spectra. Three sources and components of submicrometer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005